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Abstract— This paper applies the solution of ODE's 

encounter in fluid mechanics by augmenting it with 

symbolic Python. The implementation procedure has been 

illustrated for two types of parallel flows, i.e., Couette and 

Hagen Poiseuille flow. The suggestive results thus obtained 

are plotted and presented using Matplotlib. The 

manuscript will help beginners of fluid mechanics solve the 

fluid flow problems computationally and produce the 

results in a better way. 

 

Keywords— Couette flow; Hagen Poiseuille flow; Parallel 

flow; Python; SymPy; Matplotlib 

 

I. INTRODUCTION 

Navier stokes equations, often called NS equations, combine 

mass and momentum equations. The is no single closed-form 

solution to the NS equation to date, as the momentum equation 

is a nonlinear partial differential equation (PDE) [1]. Some 

scientists and mathematicians have tried to solve these 

equations for a particular class of flows called parallel flow 

[2]. Parallel flows are often encountered while studying 

viscous flow theory. Beginners of fluid mechanics find it 

challenging to solve PDE transformed ODE in the case of 

viscous fluid flows. Not only this, but the interpretation of 

results is also a must for better understanding a fluid flow 

problem. Though closed-form solutions to these problems 

exist, and the methodology is well established, the freshmen 

always struggle with ODE.  

Here comes the role of programming to solve these ODE. 

Python is a straightforward and robust language that can 

quickly solve any ODE symbolically without any problem. 

Even implementing these algorithms is very easy and 

straightforward in Python due to its rich and adaptive libraries 

(modules) [3]. SymPy and Numpy modules are very effective 

for symbolic and numerical computations, whereas for 

visualization, matplotlib. pylab is a convenient module [4]. 

In this paper, the viscous parallel flow problems are solved 

using Python. The results are plotted and interpreted with the 

help of matplotlib. Finally, the programs developed to solve 

the problems are given so that the readers can benefit and 

apply these programs to solve further problems encountered in 

fluid flows. 

 

 SYMPY, NUMPY, AND MATPLOTLIB 

Python has a powerful library for either numeric or symbolic 

computations. The symbolic calculations are done with the 

help of the SymPy [5] module, whereas for numerical 

computations, NumPy [6] is used. Matplotlib [7] is a handy 

tool for data plotting and visualization. These modules are 

open source and can be used freely for scientific 

computations. Both NumPy and Sympy are very powerful in 

algebra, discrete mathematics, calculus etc. [8], [9]. One of the 

attractive features of SymPy is its capability to format and 

present the results in LaTeX format.  

In this research article, the governing equations are solved by 

using SymPy, and the results are presented using Matplotlib. 

Pylab. 

 

II. PARALLEL FLOWS AND THEIR SOLUTION USING 

PYTHON 

As it has been explained, in the case of parallel flows, the only 

velocity in one direction exists, and the other direction does 

not exist. Couette, Hagen Poiseuille, and Plane Poiseuille flow 

are the one that comes under the parallel flow category [10]. 

In this section, Couette and Hagen Poiseuille flows are 

modelled using Python. Assumptions used in developing the 

velocity profiles are: 

 Viscous fluid flow 

 The fluid flow is incompressible 

 Parallel flow 

 Fully developed flow 

 Neglecting body force 

A. Couette Flow 

This is the flow of fluid between two plates in which the 

bottom plate is stationary, and the top plate moves with a 

constant velocity (u0). Fig. 1 shows the Couette flow 

schematically.   
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Fig. 1. Schematic of Couette flow 

 

Let the Eulerian flow field velocity is given by: 

                               (1) 

As this is a parallel flow, it is assumed that  and 

. From the continuity equation,  velocity variation is 

given by: 

                               (2) 

                            (3) 

Moreover, if the plates are assumed to be infinitely large in the 

z-direction, then the variation of any parameter with respect to 

z will be negligible ( ); the above relation 

just boils down to: 

                                       (4) 

Therefore, the Navier-Stokes equations (NS) in the y and z 

directions will result in: 

                    (5) 

The NS equation in the x-direction will result in: 

                                  (6) 

But as p is a function of x and u is a function of y, this partial 

differential equation (PDE) will get converted into an ordinary 

differential equation (ODE). Also, due to this type of 

functional relation, the terms become a constant. 

                         (7) 

Eq. 7 will be solved using SymPy and plotted using NumPy 

with the boundary condition that  and 

. The detailed code is shown in Table 1, 

along with its output. 

 

 

 

 

 

 

Table -1 Python Code for Couette Flow 

Python code Program Output 

# Importing package  

from sympy import 

* 

from sympy.abc 
import * 

 

# Creating symbols 

for pressure gradient 

and top plate velocity 

p_x,u_0=symbols('p_

x, u_0') 

 

# Setting-up function 

u=Function('u')(y) 

 

# Setting boundary 

condition 

bc={u.subs(y,0):0,u.s

ubs(y,h):u_0} 

 

# Forming 

differential equation 

de=Eq(mu*u.diff(y,y

),p_x) 

 

# Solving differential 

equation  

sol=dsolve(de,ics=bc

) 

#simplify(expand(sol

.rhs/u_0).coeff(p_x)) 

 

# Obtaining final 

result by dividing it 

by normalizing it 

with u_0 

u_u0=expand(simplif

y(sol.rhs.subs(p_x,-

alpha*2*mu*u_0/h**

2))/u_0) 

#pprint(u_u0) 

u_u0 

 

 

Matplotlib.pylab has been used to plot the output, which is 

implemented via the following code: 
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from pylab import * 

 

def u_u0(α,h,y): 

    return α*y/h-α*y**2/h**2+y/h 

 

h=0.1 

y=linspace(0,h,10) 

figure(1,dpi=300) 

for α in [-3,-2,-1,0,1,2,3]: 

    plot(u_u0(α,h,y),y,'-o',label=f'α={α}') 

xlabel('u/$u_0$') 

ylabel('y/h') 

legend() 

show() 

 

Fig. 2 shows the variation of non-dimensional velocity along 

the plate for different vales of  (Nondimensional pressure 

gradient =  ) ranging from -3 to 3. The positive 

value of  means a favourable pressure gradient, and hence 

the flow velocity is in the forward direction. In contrast, the 

flow reversal takes place for negative values, and the onset of 

flow reversal happens at , where it just starts. 

 

 
Fig. 2. Flow velocity distribution for Couette flow 

 

B. Hagen Poiseuille Flow 

This is a type of parallel flow that takes place in a pipe. The 

flow is shown schematically in Fig. 3. 

 
Fig. 3. Schematic of Hagen Poiseuille flow 

 

To model the problem, the best coordinate system will be 

cylindrical. The velocity profile can be written as: 

                       (8) 

As the flow is parallel so it can be assumed that 

 and . After applying the above 

assumption to the continuity equation, one can get: 

                                 (9) 

For axisymmetric flow,  the axial 

velocity is a function of r only. Hence . 

Now NS equation for r and θ direction results in: 

                     (10) 

Therefore, the NS equation in the z-direction will result in: 

                 (11) 

But as p is a function of z and  is a function of r, this partial 

differential equation (PDE) will get converted into (ODE). 

Also, due to this type of functional relation, the terms become 

a constant. 

          (12) 

Eq. 12 will be solved using SymPy and plotted using NumPy 

with the boundary condition that  and 

. The detailed code and output are shown in 

Table 2. 

 

Python code Program Output 

# Importing package  

from sympy import * 

from sympy.abc 

import * 

 

# Creating symbols for 

pressure gradient and 

flow velocity 

v_z,p_z,v_max=symbol

s('v_z,p_z,v_max') 

 

# Setting-up function 

v_z=Function('v_z')(r) 

 

# Setting boundary 

condition 

bc={v_z.subs(r,R):0,v_

z.diff(r).subs(r,0):0} 

 

# Forming differential 

equation 
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eqn=Eq(v_z.diff(r,r)+(1

/r)*v_z.diff(r),(1/mu)*p

_z) 

 

# Solving differential 

equation  

v_v0=simplify(dsolve(e

qn,ics=bc).rhs) 

 

# Obtaining maximum 

velocity 

v_max=v_v0.subs(r,0) 

 

# Normalizing the 

velocity by maximum 

velocity 

v_v0=v_v0/v_max 

 

simplify(v_v0) 

u_u0 

 

The flow velocity variation is shown in Fig. 4. One can notice 

that the velocity variation is parabolic, with a maximum at the 

centre for a fully developed case. 

 

 
Fig. 4. Velocity variation in Hagen poiseuille flow 

 

The code with which the above velocity variation has been 

developed is shown below: 

 

 

 

 

 

 

from pylab import * 

 

R=1.0 

def v_v0(r,R): 

    return 1-r**2/R**2 

 

figure(1,dpi=300) 

 

r=linspace(-R,R,20) 

plot(v_v0(r,R),r,'r-o') 

xlabel('$v/v_0$') 

ylabel('$r$') 

savefig('Hagen_poise.jpg') 

show() 

 

III. CONCLUSION 

 In this research article, a class of parallel flows viz. Couette 

and Hagen Poiseuille flow have been solved using Python. 

SymPy and NumPy modules were used to solve the 

differential equations and plot the results. The research article 

will help beginners of fluid mechanics to solve differential 

equations using Python, and they will be able to interpret the 

results by following the procedure mentioned. 
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