
 International Journal of Engineering Applied Sciences and Technology, 2022

 Vol. 6, Issue 11, ISSN No. 2455-2143, Pages 213-217

 Published Online March 2022 in IJEAST (http://www.ijeast.com)

213

OBTAINING EXACT SOLUTIONS OF VISCO-

INCOMPRESSIBLE PARALLEL FLOWS USING

PYTHON

Parth Singh Pawar, Dhananjay R. Mishra, Pankaj Dumka

Department of Mechanical Engineering,

Jaypee University of Engineering and Technology,

Guna-473226, Madhya Pradesh, India

Abstract— This paper applies the solution of ODE's

encounter in fluid mechanics by augmenting it with

symbolic Python. The implementation procedure has been

illustrated for two types of parallel flows, i.e., Couette and

Hagen Poiseuille flow. The suggestive results thus obtained

are plotted and presented using Matplotlib. The

manuscript will help beginners of fluid mechanics solve the

fluid flow problems computationally and produce the

results in a better way.

Keywords— Couette flow; Hagen Poiseuille flow; Parallel

flow; Python; SymPy; Matplotlib

I. INTRODUCTION

Navier stokes equations, often called NS equations, combine

mass and momentum equations. The is no single closed-form

solution to the NS equation to date, as the momentum equation

is a nonlinear partial differential equation (PDE) [1]. Some

scientists and mathematicians have tried to solve these

equations for a particular class of flows called parallel flow

[2]. Parallel flows are often encountered while studying

viscous flow theory. Beginners of fluid mechanics find it

challenging to solve PDE transformed ODE in the case of

viscous fluid flows. Not only this, but the interpretation of

results is also a must for better understanding a fluid flow

problem. Though closed-form solutions to these problems

exist, and the methodology is well established, the freshmen

always struggle with ODE.

Here comes the role of programming to solve these ODE.

Python is a straightforward and robust language that can

quickly solve any ODE symbolically without any problem.

Even implementing these algorithms is very easy and

straightforward in Python due to its rich and adaptive libraries

(modules) [3]. SymPy and Numpy modules are very effective

for symbolic and numerical computations, whereas for

visualization, matplotlib. pylab is a convenient module [4].

In this paper, the viscous parallel flow problems are solved

using Python. The results are plotted and interpreted with the

help of matplotlib. Finally, the programs developed to solve

the problems are given so that the readers can benefit and

apply these programs to solve further problems encountered in

fluid flows.

 SYMPY, NUMPY, AND MATPLOTLIB

Python has a powerful library for either numeric or symbolic

computations. The symbolic calculations are done with the

help of the SymPy [5] module, whereas for numerical

computations, NumPy [6] is used. Matplotlib [7] is a handy

tool for data plotting and visualization. These modules are

open source and can be used freely for scientific

computations. Both NumPy and Sympy are very powerful in

algebra, discrete mathematics, calculus etc. [8], [9]. One of the

attractive features of SymPy is its capability to format and

present the results in LaTeX format.

In this research article, the governing equations are solved by

using SymPy, and the results are presented using Matplotlib.

Pylab.

II. PARALLEL FLOWS AND THEIR SOLUTION USING

PYTHON

As it has been explained, in the case of parallel flows, the only

velocity in one direction exists, and the other direction does

not exist. Couette, Hagen Poiseuille, and Plane Poiseuille flow

are the one that comes under the parallel flow category [10].

In this section, Couette and Hagen Poiseuille flows are

modelled using Python. Assumptions used in developing the

velocity profiles are:

 Viscous fluid flow

 The fluid flow is incompressible

 Parallel flow

 Fully developed flow

 Neglecting body force

A. Couette Flow

This is the flow of fluid between two plates in which the

bottom plate is stationary, and the top plate moves with a

constant velocity (u0). Fig. 1 shows the Couette flow

schematically.

 International Journal of Engineering Applied Sciences and Technology, 2022

 Vol. 6, Issue 11, ISSN No. 2455-2143, Pages 213-217

 Published Online March 2022 in IJEAST (http://www.ijeast.com)

214

Fig. 1. Schematic of Couette flow

Let the Eulerian flow field velocity is given by:

 (1)

As this is a parallel flow, it is assumed that and

. From the continuity equation, velocity variation is

given by:

 (2)

 (3)

Moreover, if the plates are assumed to be infinitely large in the

z-direction, then the variation of any parameter with respect to

z will be negligible (); the above relation

just boils down to:

 (4)

Therefore, the Navier-Stokes equations (NS) in the y and z

directions will result in:

 (5)

The NS equation in the x-direction will result in:

 (6)

But as p is a function of x and u is a function of y, this partial

differential equation (PDE) will get converted into an ordinary

differential equation (ODE). Also, due to this type of

functional relation, the terms become a constant.

 (7)

Eq. 7 will be solved using SymPy and plotted using NumPy

with the boundary condition that and

. The detailed code is shown in Table 1,

along with its output.

Table -1 Python Code for Couette Flow

Python code Program Output

Importing package

from sympy import

*

from sympy.abc
import *

Creating symbols

for pressure gradient

and top plate velocity

p_x,u_0=symbols('p_

x, u_0')

Setting-up function

u=Function('u')(y)

Setting boundary

condition

bc={u.subs(y,0):0,u.s

ubs(y,h):u_0}

Forming

differential equation

de=Eq(mu*u.diff(y,y

),p_x)

Solving differential

equation

sol=dsolve(de,ics=bc

)

#simplify(expand(sol

.rhs/u_0).coeff(p_x))

Obtaining final

result by dividing it

by normalizing it

with u_0

u_u0=expand(simplif

y(sol.rhs.subs(p_x,-

alpha*2*mu*u_0/h**

2))/u_0)

#pprint(u_u0)

u_u0

Matplotlib.pylab has been used to plot the output, which is

implemented via the following code:

 International Journal of Engineering Applied Sciences and Technology, 2022

 Vol. 6, Issue 11, ISSN No. 2455-2143, Pages 213-217

 Published Online March 2022 in IJEAST (http://www.ijeast.com)

215

from pylab import *

def u_u0(α,h,y):

 return α*y/h-α*y**2/h**2+y/h

h=0.1

y=linspace(0,h,10)

figure(1,dpi=300)

for α in [-3,-2,-1,0,1,2,3]:

 plot(u_u0(α,h,y),y,'-o',label=f'α={α}')

xlabel('u/u_0')

ylabel('y/h')

legend()

show()

Fig. 2 shows the variation of non-dimensional velocity along

the plate for different vales of (Nondimensional pressure

gradient =) ranging from -3 to 3. The positive

value of means a favourable pressure gradient, and hence

the flow velocity is in the forward direction. In contrast, the

flow reversal takes place for negative values, and the onset of

flow reversal happens at , where it just starts.

Fig. 2. Flow velocity distribution for Couette flow

B. Hagen Poiseuille Flow

This is a type of parallel flow that takes place in a pipe. The

flow is shown schematically in Fig. 3.

Fig. 3. Schematic of Hagen Poiseuille flow

To model the problem, the best coordinate system will be

cylindrical. The velocity profile can be written as:

 (8)

As the flow is parallel so it can be assumed that

 and . After applying the above

assumption to the continuity equation, one can get:

 (9)

For axisymmetric flow, the axial

velocity is a function of r only. Hence .

Now NS equation for r and θ direction results in:

 (10)

Therefore, the NS equation in the z-direction will result in:

 (11)

But as p is a function of z and is a function of r, this partial

differential equation (PDE) will get converted into (ODE).

Also, due to this type of functional relation, the terms become

a constant.

 (12)

Eq. 12 will be solved using SymPy and plotted using NumPy

with the boundary condition that and

. The detailed code and output are shown in

Table 2.

Python code Program Output

Importing package

from sympy import *

from sympy.abc

import *

Creating symbols for

pressure gradient and

flow velocity

v_z,p_z,v_max=symbol

s('v_z,p_z,v_max')

Setting-up function

v_z=Function('v_z')(r)

Setting boundary

condition

bc={v_z.subs(r,R):0,v_

z.diff(r).subs(r,0):0}

Forming differential

equation

 International Journal of Engineering Applied Sciences and Technology, 2022

 Vol. 6, Issue 11, ISSN No. 2455-2143, Pages 213-217

 Published Online March 2022 in IJEAST (http://www.ijeast.com)

216

eqn=Eq(v_z.diff(r,r)+(1

/r)*v_z.diff(r),(1/mu)*p

_z)

Solving differential

equation

v_v0=simplify(dsolve(e

qn,ics=bc).rhs)

Obtaining maximum

velocity

v_max=v_v0.subs(r,0)

Normalizing the

velocity by maximum

velocity

v_v0=v_v0/v_max

simplify(v_v0)

u_u0

The flow velocity variation is shown in Fig. 4. One can notice

that the velocity variation is parabolic, with a maximum at the

centre for a fully developed case.

Fig. 4. Velocity variation in Hagen poiseuille flow

The code with which the above velocity variation has been

developed is shown below:

from pylab import *

R=1.0

def v_v0(r,R):

 return 1-r**2/R**2

figure(1,dpi=300)

r=linspace(-R,R,20)

plot(v_v0(r,R),r,'r-o')

xlabel('v/v_0')

ylabel('r')

savefig('Hagen_poise.jpg')

show()

III. CONCLUSION

 In this research article, a class of parallel flows viz. Couette

and Hagen Poiseuille flow have been solved using Python.

SymPy and NumPy modules were used to solve the

differential equations and plot the results. The research article

will help beginners of fluid mechanics to solve differential

equations using Python, and they will be able to interpret the

results by following the procedure mentioned.

IV. REFERENCE

[1] A. Majda, A. Bertozzi, and A. Ogawa, “Vorticity and

Incompressible Flow. Cambridge Texts in Applied

Mathematics,” Appl. Mech. Rev., vol. 55, no. 4, pp.

B77–B78, 2002.

[2] F. M. White, Viscous flow theory. McGraw-Hill, New

York, 1974.

[3] A. Bäcker, “Computational physics education with

python,” Comput. Sci. Eng., vol. 9, no. 3, pp. 30–33,

2007.

[4] M. Cywiak and D. Cywiak, “SymPy,” in Multi-

Platform Graphics Programming with Kivy: Basic

Analytical Programming for 2D, 3D, and Stereoscopic

Design, Berkeley, CA: Apress, 2021, pp. 173–190.

[5] A. Meurer et al., “SymPy: Symbolic computing in

python,” PeerJ Comput. Sci., vol. 2017, no. 1, pp. 1–27,

2017.

[6] S. Van Der Walt, S. C. Colbert, and G. Varoquaux,

“The NumPy array: A structure for efficient numerical

computation,” Comput. Sci. Eng., vol. 13, no. 2, pp.

22–30, 2011.

[7] E. Bisong, “Matplotlib and Seaborn,” in Building

Machine Learning and Deep Learning Models on

Google Cloud Platform, Berkeley, CA: Apress, 2019,

pp. 151–165.

[8] M. Rocklin and A. R. Terrel, “Symbolic statistics with

SymPy,” Comput. Sci. Eng., vol. 14, no. 3, pp. 88–93,

2012.

[9] P. S. Pawar, D. R. Mishra, and P. Dumka, “Solving

First Order Ordinary Differential Equations using Least

 International Journal of Engineering Applied Sciences and Technology, 2022

 Vol. 6, Issue 11, ISSN No. 2455-2143, Pages 213-217

 Published Online March 2022 in IJEAST (http://www.ijeast.com)

217

Square Method : A comparative study,” Int. J. Innov.

Sci. Res. Technol., vol. 7, no. 3, pp. 857–864, 2022.

[10] G. Biswas and S. K. Som, Introduction to Fluid

Mechanics and Fluid Machines, no. March. Tata

McGraw-Hill Education, 2003.

